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Abstract

In this work, we consider the problem of isolating actuator and sensor faults in the solution

copolymerization of Methyl Methacrylate (MMA) and Vinyl Acetate (VAc) monomers. To

this end, first a bank of high gain observers are designed, and fault-detection and isolation

(FDI) residuals are defined. The process dynamics are further analyzed to categorize fault

scenarios as distinguishable and indistinguishable, and the necessary and sufficient conditions

for the classification are presented. Subsequently, filters are designed that enable FDI for the

distinguishable fault scenarios and fault detection for the indistinguishable fault scenarios.

The FDI filters are implemented on the copolymerization process, and the results compared

with a linear model based filter design.
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Introduction

Polymerization processes play an important role in chemical industries. The increasing

demand for high quality polymers has motivated significant automation to provide the desired

quality in the polymer products. However, as the level of automation increases, the process

needs to be safeguarded against actuator and sensor faults. If not properly handled, they

may cause issues such as off-spec product, plant shutdowns, economic losses or even safety

hazards. Fault-handling, however, can only be achieved subsequent to Fault-detection and

isolation (FDI). This realization has driven significant effort in the area of fault detection

and isolation.

The most common approach to FDI is to employ information in the system model to

diagnose faults. The approach is based on generating residuals, which are in some sense the

difference between the expected and observed process behavior, by utilizing the analytical

redundancy provided by the process model to generate state estimates. Additionally, thresh-

olds are put in place to account for plant model mismatch and measurement noise, with an

intent to avoid false alarms. There exists a plethora of results on FDI assuming linear process

dynamics (see, e.g., [1], [2], [3] and [4]). However, these results may not remain effective for

the copolymerization processes owing to the strong nonlinear characteristics of the process.

The FDI problem has also been considered for nonlinear systems subject to actuator

faults, including approaches that utilize data-driven methods and those that generalize the

problem to handle hybrid systems (see, e.g., [5], [6], [7], [8], [9] and [10]). In comparison

to actuator faults, there exits fewer results on FDI for sensor faults (see, e.g., [4], [11], [12],

[13] and [14]). The state estimation problem associated with FDI has been approached

using different estimation techniques such as nonlinear observers [15], adaptive estimation
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methods [16] or bank of high gain observers (see, e.g., [11] and [17]). Recently, a method that

uses banks of high-gain observers was proposed to distinguish between actuator and sensor

faults [18], where a system structure was assumed that enabled detection and isolation of all

actuator and sensor faults. However, in some cases, as with the copolymerization process

under consideration, the system structure does not allow the detection and isolation of all

possible fault scenarios.

Motivated by the above considerations, in this work, we consider the copolymerization

process and design an FDI mechanism cognizant of the fact that the system structure permits

detection and isolation of only a subset of the faults. The rest of the manuscript is organized

as follows: First, the polymerization process is described and a mathematical model for

the process is presented. Next, we describe the control objectives for the polymerization

reactor. Then, the nonlinear actuator and sensor fault isolation framework that recognizes

the distinction between distinguishable and indistinguishable fault scenarios is designed. Also

as a basis of comparison, linear FDI filters are designed by utilizing a linearized model for the

process. The designed FDI filters are used to isolate faults for the polymerization process.

Finally, we summarize our results in conclusion.

Process Description and Model

In this section, the MMA and VAc solution copolymerization process is described, where

monomers A (MMA) and B (VAc) are continuously fed to a continuous-stirred tank reactor

(CSTR) with initiator (azobisisobutyronitrile, AIBN), solvent (benzene), and chain transfer

agent (acetaldehyde). A cooling jacket is equipped to remove the heat of the copolymerization

reaction. The mathematical model for this reactor (in the absence of recycle streams and
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inhibitors) is of the following form (see [10] and [19] ):

Ċj =

(
Qj

Mj

− Cj
∑

kQk

ρ

)
1

V
−Rj, j = a, b, i, s, t

ṪR = (T0 − TR)

∑
kQk

ρV
+ [(−∆Hpaa)kpaaCaCa· + (−∆Hpba)kpbaCaCb·

(−∆Hpab)kpabCbCa· + (−∆Hpbb)kpbbCbCb·]
1

ρcp
− UA(TR − Tc)

ρcpV

(1)

where Cj is the concentration of species j, with subscript a, b, i, s, and t denoting monomer A,

monomer B, initiator, solvent, and chain transfer agent, respectively, TR is the temperature

in the reactor, Qk is the mass flow rate of species k, k = a, b, i, s, t, Tc is the temperature

in the cooling jacket, Mj is the molar mass of species j, V is the volume of the reactor, ∆H

is the enthalpy of the reaction, ρ and cp are the density and the heat capacity of the fluid in

the reactor, respectively, U is the overall heat transfer coefficient, A is the heat transfer area

of the reactor, and

Ra = [(kpaa + kxaa)Ca· + (kpba + kxba)Cb·]Ca

Rb = [(kpbb + kxbb)Cb· + (kpab + kxab)Ca·]Cb

Ri = kiCi

Rs = (kxasCa· + kxbsCb·)Cs

Rt = (kxatCa· + kxbtCb·)Ct

Ca· =
−l2 +

√
l22 − 4l1l3

2l1

Cb· = βCa·

l1 = kcaa + kdaa + 2β(kcab + kdab) + β2(kcbb + kdbb)

l2 = 0

l3 = −2kiCiε

β =
(kpab + kxab)Cb
(kpba + kxba)Ca
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Each of the rate constants follows Arrhenius dependence on temperature described by:

k = Ake
−E/RTR (3)

where Ak is the preexponential constant, E is the activation energy, and R is the ideal gas

constant. The process parameters can be found in Table 1 (see also [10] and [19]).

The control objective under normal conditions is to operate the process at the nominal

operating point, where Ca = 2.5 × 10−1 kmol/m3, Cb = 5.84 kmol/m3, Ci = 2.0 × 10−3

kmol/m3, Cs = 2.75 kmol/m3, Ct = 3.7 × 10−1 kmol/m3, and TR = 350.5 K. It is assumed

that all the state measurements are available, and the flow rates Qk, k = a, b, i, s, t, and

Tc are chosen as manipulated input variables. The inputs are bounded as 0 ≤ Qa ≤ 50

kg/hr, 0 ≤ Qb ≤ 120 kg/hr, 0 ≤ Qi ≤ 0.5 kg/hr, 0 ≤ Qs ≤ 100 kg/hr, 0 ≤ Qt ≤ 10 kg/hr,

and 320 ≤ Tc ≤ 350 K. The steady state values of the inputs corresponding to the nominal

operating point are Qa = 18 kg/h, Qb = 90 kg/h, Qi = 0.18 kg/h, Qs = 36 kg/h, Qt = 2.7

kg/h, and Tc = 336.15 K.

The Lyapunov based nonlinear model predictive control design of [20] is implemented

for the control purpose. The key feature of the MPC design is the implementation of a

Lyapuonv function decay constraint to achieve stabilization (the formulation is reproduced

in the Appendix). The hold-time for the control action is chosen as ∆ = 6 min, control

horizon Tc = 2∆, and the prediction horizon Tp = 10∆. In the objective function, the

states are normalized against ranges [0, 1], [0, 8], [0, 5×10−3], [0, 10], [0, 1], and [340, 355],

respectively, and the inputs are normalized using the magnitude of constraints. The matrices

used to penalize the deviations of the normalized states from the steady state values and the

increments of the inputs are chosen as Qw and Rw, respectively. Qw is a diagonal matrix

with all diagonal arrays equal to 1 and Rw is a diagonal matrix with diagonal arrays equal
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to 1, 1, 50, 0.5, 1, 1. The Lyapunov function is chosen to be a quadratic function of the form

V (x) = x′Px, with

P =


22.9 3.60 3.99×103 0.01 5×10−3 2.08
3.60 3.41 5.3×102 5×10−3 5×10−3 0.28

3.99×103 5.3×102 7.98×105 1.24 0.28 4.49×102
0.01 5×10−3 1.24 2.98 2×10−3 3×10−4

5×10−3 5×10−3 0.28 2×10−3 2.97 10−4

2.08 0.28 4.49×102 3×10−4 10−4 0.52



Actuator and sensor fault isolation framework for the

copolymerization process

In this section, we design a nonlinear actuator and sensor fault isolation framework for

the copolymerization process. For comparison, we also design linear model based FDI filters

by considering a linearized model of the process dynamics.

Nonlinear actuator and sensor fault isolation framework for the

copolymerization process

The key idea is to exploit the analytical redundancy in the copolymerization process

through state observer design using a bank of high-gain observers [17]. To this end, consider

the description of the copolymerization process in the following form:

ẋ = f(x) +G(x)(u+ ũ)

y = h(x) + ỹ

(4)

where x ∈ X ⊂ Rn denotes the vector of state variables, with X being a compact set of the

admissible state values, u = [u1, . . ., um]T ∈ Rm denotes the vector of prescribed control

inputs, taking values in a nonempty compact convex set U ⊆ Rm, ũ = [ũ1, . . ., ũm]T ∈ Rm

denotes the unknown fault vector for the actuators, y = [y1, . . ., yp]
T ∈ Rp denotes the vector

7



of output variables, ỹ = [ỹ1, . . ., ỹp]
T ∈ Rp denotes the unknown fault vector for the sensors,

and G(x) = [g1(x), . . . , gm(x)]. Due to the presence of physical constraints, the actual input

u+ ũ implemented to the system takes values from the set U as well.

The design of the high gain observer requires the satisfaction of Assumption 1 below (and

exploits the fact that the control action is computed using MPC and held constants over a

sampling time):

Assumption 1. [21] There exist integers ωi, i = 1, . . ., p, with
∑p

i=1 ωi = n, and a coordinate

transformation ζ = T (x, u) such that if u = ū, where ū ∈ U is a constant vector, then the

representation of the system of Eq. (4) in the ζ coordinate takes the following form:

ζ̇ = Aζ +Bφ(x, ū)

y = Cζ

(5)

where ζ = [ζ1, . . . , ζp]
T ∈ Rn, A = blockdiag[A1, . . ., Ap], B = blockdiag[B1, . . ., Bp],

C = blockdiag[C1, . . ., Cp], φ = [φ1, . . . , φp]
T, ζi = [ζi,1, . . . , ζi,ωi

]T, Ai =

0 Iωi−1

0 0

, with

Iωi−1 being a (ωi − 1)× (ωi − 1) identity matrix, Bi = [0T
ωi−1, 1]T, with 0ωi−1 being a vector

of zeros of dimension ωi − 1, Ci = [1, 0T
ωi−1], and φi(x, ū) = φi,ωi

(x, ū), with φi,ωi
(x, ū)

defined through the successive differentiation of hi(x): φi,1(x, ū) = hi(x) and φi,j(x, ū) =

∂φi,j−1

∂x
[f(x) + g(x)ū], j = 2, . . . , ωi. Furthermore, T : Rn × U → Rn and T−1 : Rn × U → Rn

are C1 functions on their domains of definition.

Assumption 1 describes the condition that the nonlinear system of Eq. 4 is observable

from a given set of measured outputs. The bank of high gain observers is designed by leaving

out subsets of the measured variables, subject to the satisfaction of Assumption 1 for the

remaining measured variables (i.e., verifying whether the states can be estimated using the

remaining measured variables). Assumption 1 does not hold when either Cs or Ct (or both)
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are not measured. Note that since Cs and Ct do not appear on the right hand side of any state

derivative expect Ċs and Ċt, respectively, they are not observable unless directly measured.

Thus transformation required in Assumption 1 does not hold for any subsets of sensors that

do not include both Cs and Ct.

For a particular acceptable choice of a subset of sensors, y = [Ca, Cb, Ci, Cs, Ct, TR], for

t ∈ [tk, tk+1), where tk = k∆, k = 0, . . . ,∞, the observer is formulated as follows:

˙̂
ζ = Aζ̂ +Bφ0(x̂, u(tk)) +H(y − Cζ̂)

ζ̂(tk) = T (x̂(tk), u(tk))

(6)

where x̂ and ζ̂ denote the estimates of x and ζ, respectively, H = blockdiag[H1, . . ., Hp] is

the observer gain, Hi =
[ai,1
ε
, . . . ,

ai,ωi

εωi

]T
, with sωi + ai,1s

ωi−1 + · · ·+ ai,ωi
= 0 being a Hurwitz

polynomial and ε being a positive constant to be specified, x̂(tk) = T−1(ζ̂(t−k ), u(tk−1)) for

k = 1, . . . ,∞, and φ0 is the nominal model of φ. The state observer requires the global

boundedness of φ0 as it is presented in Assumption 2.

Assumption 2. [18] φ0(x, u) is a C0 function on its domain of definition and globally bounded

in x.

In this work, we consider each fault scenario comprising at most two simultaneous faults.

Thus with m actuators and p sensors, the total number of possible fault scenarios nf is

nf = Cm
1 C

p
0 + Cm

0 C
p
1 + Cm

1 C
p
1 + Cm

2 C
p
0 + Cm

0 C
p
2 = m+ p+mp+

m(m− 1)

2
+
p(p− 1)

2
(7)

where Cn
k presents the binomial coefficients which is equal to

(
n
k

)
= n

k!(n−k)! . For the copoly-

merization process, given that there are six actuators and six sensors, and considering at

most two simultaneous faults, there exist a total 2×C6
0C

6
1 +C6

1C
6
1 + 2×C6

0C
6
2 = 78 possible

scenarios.
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For each fault scenario, the objective is to define a residual as the norm of the difference

between the state prediction and the state estimate for the subsystem (appropriately defined)

corresponding to the fault scenario. The expected process trajectory is computed using

the subsystem of the process model that is independent of the specific actuator fault (if

that is included in that particular fault scenario) and the state estimates generated by the

observer that does not utilize the particular sensor (if that is included in that particular fault

scenario), and is not directly effected by the particular actuator. This expected trajectory

when compared with the observed trajectory to generate residuals results in each residual

being sensitive to a unique subset of faults.

The system structure perquisite for generating such state estimates is presented in As-

sumption 3. To this end, let θf,i denote the fault vector (sensor/and or actuator) for the ith

fault scenario, and θ̄f,i the remaining fault variable vector (the remaining ũ and ỹ variables).

Specifically, let uf,i and yf,i denote the vectors of input and output variables subject to faults

θf,i, respectively. Let ūf,i and ȳf,i denote the vectors of the rest of the input and output

variables, respectively.

Assumption 3. [18] Assumptions 1 and 2 hold for the system of Eq. (4), with ūf,i and ȳf,i

being the vectors of input and output variables, respectively, i = 1, . . . , nf .

Under Assumption 3, the state observer for the ith fault scenario is designed as follow :

˙̂
ζj = Aj ζ̂j +Hj(ȳf,i − Cj ζ̂j)

˙̂
ζj(tk) = T j(x̂j(tk), ūf,i(tk))

(8)

where j presents the jth observer.

We now describe how residuals are generated for the copolymerization process for the

fault vectors for which Assumption 3 is satisfied. For example, consider a single actuator
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fault in θf,11 = ũ6 (corresponding to faults in the actuator for Tc), the corresponding state

prediction is computed by first considering the subsystem for which u6 = Tc does not appear

on the right-hand side of the corresponding ordinary differential equations (ODE’s):

Ċa =

(
Qa

Ma

− Ca
∑

kQk

ρ

)
1

V
−Ra(Ca, Cb, Ci, TR)

Ċb =

(
Qb

Mb

− Cb
∑

kQk

ρ

)
1

V
−Rb(Ca, Cb, Ci, TR)

Ċi =

(
Qi

Mi

− Ci
∑

kQk

ρ

)
1

V
−Ri(Ci, TR)

Ċs =

(
Qs

Ms

− Cs
∑

kQk

ρ

)
1

V
−Rs(Ca, Cb, Ci, TR)

Ċt =

(
Qt

Mt

− Ct
∑

kQk

ρ

)
1

V
−Rt(Ca, Cb, Ci, TR)

(9)

In particular, the prediction model does not include TR as one of its states and wherever

TR appears on the right hand side of corresponding ODE’s (which affects the dynamics of

the other prediction states), its estimated value, T̄R is used. Therefore, the model used to

generate predictions for this filter takes the following form:

˙̃Ca =

(
Qa

Ma

− C̃a
∑

kQk

ρ

)
1

V
−Ra(C̃a, C̃b, C̃i, T̄R)

˙̃Cb =

(
Qb

Mb

− C̃b
∑

kQk

ρ

)
1

V
−Rb(C̃a, C̃b, C̃i, T̄R)

˙̃Ci =

(
Qi

Mi

− C̃i
∑

kQk

ρ

)
1

V
−Ri(C̃i, T̄R)

˙̃Cs =

(
Qs

Ms

− C̃s
∑

kQk

ρ

)
1

V
−Rs(C̃a, C̃b, C̃i, T̄R)

˙̃Ct =

(
Qt

Mt

− C̃t
∑

kQk

ρ

)
1

V
−Rt(C̃a, C̃b, C̃i, T̄R)

(10)

where (̃·) denotes the predicted value for a particular variable and (̄·) denotes the correspond-

ing estimate.

In Eq. 10, the predicted values (C̃j, where j = a, b, i, s, t) are the expected trajectories of
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states computed using the prediction model presented as Eq. 10. The estimate T̄R for use in

the above prediction is generated by designing a high gain observer that uses measurements

of y1 = Ca, y2 = Cb, y3 = Ci, y4 = Cs and y5 = Ct. The coordinate transformation for this

observer is as follows: ζ11,1 = Ca, ζ
1
2,1 = Cb, ζ12,2 = Ċb, ζ13,1 = Ci, ζ

1
4,1 = Cs, and ζ15,1 = Ct,

and uses the fact that the input action is computed in a discrete fashion (see [17] for further

details). The observer design is as follows:

˙̂
ζ1,1 =

a1,1
ε

(y1 − ζ̂1,1)

˙̂
ζ2,1 = ζ̂2,2 +

a2,1
ε

(y2 − ζ̂2,1)

˙̂
ζ2,2 =

a2,2
ε2

(y2 − ζ̂2,1)

˙̂
ζ3,1 =

a3,1
ε

(y3 − ζ̂3,1)

˙̂
ζ4,1 =

a4,1
ε

(y4 − ζ̂4,1)

˙̂
ζ5,1 =

a5,1
ε

(y5 − ζ̂5,1)

(11)

with ε = 0.04, ai,1 = 5, and ai,2 = 100, i =1, 2, 3, 4. The other observers required for

the implementation of the rest of the filters are also designed in a similar fashion with the

same values of the observer parameters. Among these observers, four are designed using five

outputs corresponding to single or multiple fault scenarios (single sensor or single actuators

faults or simultaneous sensor and actuator faults), and six using four outputs, corresponding

to multiple fault scenarios (two sensors or simultaneous sensor and actuator faults).

The dedicated residual for a fault in u6 = Tc (with θf,i = T̃c) is then defined as

r11 =

√
(C̃a − C̄a)2 + (C̃b − C̄b)2 + (C̃i − C̄i)2 + (C̃s − C̄s)2 + (C̃t − C̄t)2

When a fault takes place in Tc only, the estimates of the states (utilized in the present

filter) stay accurate, because the value of Tc is not utilized to generate the estimates. Fur-

thermore, the subsystem has been chosen to be independent of Tc, therefore the predicted
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values stay the same as the true values, which are in turn being correctly estimated. Thus,

this residual stays close to zero.

On the other hand, consider θf,1 = C̃a for which a residual r1 needs to be designed. The

model used to generate predictions for this filter takes the form:

˙̃Ca =

(
Qa

Ma

− C̃a
∑

kQk

ρ

)
1

V
−Ra(C̃a, C̃b, C̃i, T̃R)

˙̃Cb =

(
Qb

Mb

− C̃b
∑

kQk

ρ

)
1

V
−Rb(C̃a, C̃b, C̃i, T̃R)

˙̃Ci =

(
Qi

Mi

− C̃i
∑

kQk

ρ

)
1

V
−Ri(C̃i, T̃R)

˙̃Cs =

(
Qs

Ms

− C̃s
∑

kQk

ρ

)
1

V
−Rs(C̃a, C̃b, C̃i, T̃R)

˙̃Ct =

(
Qt

Mt

− C̃t
∑

kQk

ρ

)
1

V
−Rt(C̃a, C̃b, C̃i, T̃R)

˙̃TR = (T0 − T̃R)

∑
kQk

ρV
+ [(−∆Hpaa)kpaaC̃aCa· + (−∆Hpba)kpbaC̃aCb·

(−∆Hpab)kpabC̃bCa· + (−∆Hpbb)kpbbC̃bCb·]
1

ρcp
− UA(T̃R − Tc)

ρcpV

(12)

To estimate C̄a, a high gain observer is designed that uses measurements of y2 = Cb,

y3 = Ci, y4 = Cs, y5 = Ct, y6 = TR. The coordinate transformation for this observer is as

follows: ζ11,1 = Cb, ζ
1
1,2 = Ċb, ζ12,1 = Ci, ζ

1
3,1 = Cs, ζ

1
4,1 = Ct, and ζ15,1 = TR. The observer
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design is as follows:

˙̂
ζ1,1 = ζ̂1,2 +

a1,1
ε

(y2 − ζ̂1,1)

˙̂
ζ1,2 =

a1,2
ε2

(y2 − ζ̂1,1)

˙̂
ζ2,1 =

a2,1
ε

(y3 − ζ̂2,1)

˙̂
ζ3,1 =

a3,1
ε

(y4 − ζ̂3,1)

˙̂
ζ4,1 =

a4,1
ε

(y5 − ζ̂4,1)

˙̂
ζ5,1 =

a5,1
ε

(y6 − ζ̂5,1)

(13)

The residual for r1 is defined as follows:

r1 =

√
(C̃a − C̄a)2 + (C̃b − C̄b)2 + (C̃i − C̄i)2 + (C̃s − C̄s)2 + (C̃t − C̄t)2 + (T̃R − T̄R)2

Note that the evolution of TR is directly affected by the fault in Tc, and the estimated value

of TR being accurate, it will therefore also be affected by the fault in Tc. However, the

prediction model uses the expected or computed value of Tc, therefore the evolution of the

states in the prediction model ends up being different from the true evolution. Thus, r1

breaches its threshold. The rest of the residuals are designed in a similar fashion, and every

filter that uses the computed values of Tc ends up breaching the threshold. In particular,

all the residuals breach their thresholds except for r11 (the dedicated filter for Tc), r12, r13,

r14 and r15 (filters dedicated for Tc, and a sensor fault). By looking at these residuals, one

can deduce that either a fault in Tc, or a fault in Tc and one of the sensors must have taken

place. However, since breaching all the dedicated residuals for the sensor faults indicate no

fault in any of the sensors, by the process of elimination it can be concluded that a single

actuator fault in Tc must have taken place. The rest of the fault isolation logic is determined

in a similar fashion.

Remark 1. Note that the system structure does not satisfy the standard assumptions for
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high gain observer design (e.g., [22], [23]). However, the recognition that the control action

is implemented in a discrete fashion allows invoking the relaxation on the system structure,

as presented in [17]. This in turn enables the design of the high-gain observers required for

the purpose of building the bank of observers that constitute the FDI filters.

Now consider θf,i = ỹ4 = C̃s. Since θf,i = C̃s does not include any input fault, the

corresponding prediction model takes the same form as it is described in Eq. 12. To estimate

C̄s, a high gain observer needs to be designed that uses measurements of y2 = Cb, y3 = Ci,

y4 = Cs, y5 = Ct, y6 = TR. To design the corresponding observer, the required transformation

in Assumption 1 must exist. However, since Cs is fundamentally unobservable, the required

transformation in Assumption 1 does not exist and the corresponding high gain observer

which is insensitive to fault in y4 = Cs can not be designed. Thus, the corresponding

insensitive residual to θf,i = C̃s is undefined and when fault in y4 = Cs takes place, all of

the existing residuals breach their thresholds, and also all the residuals breach thresholds

when say a fault in y5 = Ct takes place making it impossible to isolate whether a fault has

taken place in y4 = Cs or y5 = Ct. Lets consider another example, when θf,i = ũ1 = Q̃a. To

define the corresponding prediction model, the subsystem which is not subject to fault input

must be used. However, since u1 = Qa appears in all of the state equations (see Eq. 1),

therefore the corresponding prediction model does not exist and as a result the corresponding

insensitive residual to θf,i = Q̃a is undefined. Thus when fault in u1 = Q1 takes places, all of

the existing residuals breach their thresholds and fault in u1 = Q1 can not be isolated.

Motivated by above considerations, we first define distinguishable faults scenarios as those

for which if that particular fault-scenario occurs, there exists an FDI mechanism that can be

used to determine uniquely (based on the evolution of the measurements), the occurrence of
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that fault scenario. Corollary 1 presents the necessary and sufficient conditions for a fault

scenario to be distinguishable. The proof is omitted here since it follows the same line of

arguments as the proof of Proposition 1 and Theorem 1 in [18]. To this end, let ri,ins denote

the vector of corresponding insensitive residuals to the ith fault scenario, as defined in [18].

Corollary 1. Consider the system of Eq. 4, for which Assumptions 1-3 hold. A fault

scenario θf,i, where θf,i = ỹf or θf,i = ũf is distinguishable if and only if there exists a one-

to-one mapping between every fault scenario and ri,ins, where i ∈ {1, . . . , nf}. Furthermore,

any θf,i that comprises combinations of distinguishable fault scenarios is distinguishable and

combination of an indistinguishable fault scenario with any fault scenario is indistinguishable.

Corollary 1 classifies faults in two categories; distinguishable (θf,dis) and indistinguishable

(θf,indis) faults. Each fault scenario belongs only to one of these categories. If mdis of the

inputs and pdis of the outputs (when considered in isolation) satisfy the conditions in Corollary

1, the cardinality of set θf,dis is

Cmdis
1 Cpdis

0 + Cmdis
0 Cpdis

1 + Cmdis
1 Cpdis

1 + Cmdis
2 Cpdis

0 + Cmdis
0 Cpdis

2 =

mdis + pdis +mdispdis +
mdis(mdis − 1)

2
+
pdis(pdis − 1)

2

(14)

Furthermore, since θf,dis and θf,indis are complement of each other, therefore the cardinality

of set θf,indis is nf − |θf,dis|.

For the copolymerization process y4 = Cs and y5 = Ct are fundamentally unobservable,

and u1 = Qa or u2 = Qb or u3 = Qi or u4 = Qs or u5 = Qt appears in all of the state equations

resulting in prediction model to be undefined for them. Thus for single fault in any of these

actuators or sensors, the corresponding insensitive residuals are undefined. Thus mdis = 1,

and pdis = 4, therefore only C1
0C

4
1 + C1

1C
4
0 + C1

1C
4
1 + C4

2 = 15 scenarios are distinguishable.

The rest of the 63 fault scenarios belong to θf,indis.
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With the recognition that some of fault scenarios are indistinguishable, the FDI scheme

is still able to detect the indistinguishable faults and confine the possible scenarios for fault

location to all possible combinations of indistinguishable actuators and sensors. Theorem 1

presents the mechanism for detecting and limiting the possible locations for indistinguishable

actuators and sensors. To this end, consider the system of Eq. (4), where at most two

simultaneous faults can occur and let δi denote the threshold for the ith fault scenario and

tk′ be the time by which all of the residuals have breached their threshold i.e., ri,k > δi

∀i ∈ {1, . . . , |θf,dis|}.

Theorem 1. Consider the system of Eq. (4), for which Assumption 1-3 hold. If tk ≥ tk′

then θf,indis(t) 6= 0 for some t ∈ [tk′ , tk).

Proof. First, note that ri,k > δi ∀i ∈ {1, . . . , |θf,dis|}, we know that some θfi > 0. We then

show that some fault scenario θf,indis take place by contradiction argument. To this end, lets

assume that θf,dis take place. Therefore ri,k ≤ δi for at least one i ∈ {1, . . . , |θf,dis|} (Theorem

1 in [18]). However, this is in contradiction with ri,k > δi for all i ∈ {1, . . . , |θf,dis|}. Thus

θf,indis(t) 6= 0 for some t ∈ [tk′ , tk). This concludes the proof of Theorem 1.

As a result of Theorem 1, the design acts as a fault detection mechanism for faults in

y4 = Cs, y5 = Ct, u1 = Qa, u2 = Qb, u3 = Qi, u4 = Qs, u5 = Qt or any combination of them.

In particular, if a fault takes place in any of these, all of the residuals are expected to breach

their thresholds, resulting in fault detection. However, isolation of the fault is not achieved.

Note that this is a fundamental limitation of the process, and not of the FDI framework.

The FDI framework, however, clearly points to this realization, which can be utilized at the

design stage to wisely invest in ‘smart’ or redundant sensors and actuators for these variables

to achieve FDI.
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Linear FDI filters for the copolymerization process

In this section, we design linear FDI filters for the copolymerization process to compare

results obtained from the FDI nonlinear filters with model based linear FDI filters. However,

because of lack of result in the literature on simultaneous actuator and sensor fault isolation

design for linear systems (see e.g., [1], [24], [25] and [26] ), the FDI linear filters are also

designed based on [18] by considering a linearized model for the copolymerization process.

The only difference here is the residuals are defined as the norm of difference between the

state prediction and the output measurements for the subsystem corresponding to the fault

scenario. A fault is detected and isolated when the corresponding residuals breach their

thresholds. For example when a fault takes place in y1, only r1, r5, r6, r7, r13 breach their

thresholds. By investigating these residuals, it can be deduced that either a fault in y1 = Ca

or a fault in y1 = Ca and one of other sensors or a fault in y1 = Ca and the single actuator

must have taken place. However, since the dedicated residual for other single sensor faults

and the single actuator fault do not breach their residuals, by using a process of elimination it

can be concluded that a single sensor fault in Ca must have taken place. As with the nonlinear

FDI filters, because of existence of unobservable outputs (Cs and Ct) and appearance of five

of the six inputs (Qa, Qb, Qi, Qs and Qt) in all of the model equations, we can only design

15 residuals.

Remark 2. Note that the presence of the FDI mechanism enables FDI in the closed-loop

system thereby allowing the operator to determine the appropriate course of action following

a fault. For instance, in the case of a single actuator fault, if the fault is simply a constant bias

fault, then a robust/offset free controller would still keep the process operating at the desired

operating point. Knowing through the FDI mechanism that a sensor fault has not taken
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place can help the operator prioritize the correction of such an actuator at a later stage. On

the other hand, with the FDI determining a single actuator fault, if the functioning sensors

reveal that the process is moving off-spec, or the control action starts chattering (perhaps

because the existing robust/offset free controller is not able to handle the particular kind of

actuator fault), the operator can then trigger reconfiguration (e.g., [6]) and actuator repair

on a more urgent basis. For sensor faults, on the other hand, even if its a constant bias

fault, there exists no control law that can drive the process to the desired set-point for the

variable in question. The FDI information then becomes critical in taking that sensor out

of the loop (where possible), or triggering immediate recertification of the sensor to preserve

on-spec production.

Remark 3. Note that there exist so called smart sensors and actuators that could potentially

also be used for purpose of fault diagnosis. These are inherently based on the principle of

physical redundancy. For instance, a smart actuator for a valve would have an additional

means of ‘measuring’ the valve opening which can then be compared to the prescribed value

to detect and isolate the fault. The proposed FDI approach is not intended to replace the

smart sensors and actuators, but instead to complement these, and also point to where such

devices are required for the purpose of FDI. In particular, the proposed FDI approach can

be utilized, where possible, to achieve FDI for number of sensors and actuators to mitigate

the high installation and maintenance cost of smart sensors. For more safety critical sensors

and actuators, the model based approach can be utilized to provide an additional layer

of redundancy to the smart devices. Finally, a rigorous FDI design points, as with the

copolymerization process, to the requirement of smart devices for certain subsets of sensors

and actuators where fault isolation is not possible otherwise.
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Remark 4. Note that in the present manuscript, the high gain observers are only used for

the purpose of illustration. Any other estimation scheme such as moving horizon estimation

(MHE) could also be used. The critical requirement being the ability for the estimates to

converge at a sufficiently fast rate. Note that successful FDI relies on accurate enough state

estimation, in the absence of which the FDI filters will lead to either missed detection or

false alarms.

Application of the actuator and sensor fault isolation

framework

In this section, we apply the proposed FDI filters to the process. Practical issues such as

parametric uncertainty, time-varying disturbances, and measurement noise are considered in

the simulations. Specifically, the values of Apbb, Axas, Axbs, Axat, and Axbt are 10% smaller

than their nominal value and Axbb is 10% larger. The bounds on these uncertainty are

±10% of their nominal values. The inlet streams of monomer B and solvent contain small

amounts of the other. The mass fraction of monomer B in the flow of solvent varies according

to 0.02 + 0.02 sin(t), and the mass fraction of solvent in the flow of monomer B varies as

0.01 + 0.01 sin(2t). The concentration and temperature measurements have combinations of

5 Hz sinusoidal noises. The measurement noise has a normal distribution of variance 0.02,

0.2, 0.0005, 0.2, 0.02, and 0.5 in Ca, Cb, Ci, Cs, Ct, and TR, respectively. It is assumed that

measurements are sampled 10 times evenly between two successive times when control action

is implemented. The noisy measurement are processed through a first order low pass filter

with time constant equal to 3 min.

To account for the presence of disturbances and measurement noise, thresholds for each
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filter were determined based on normal operation, and are reported in Tables 2 and 3. In

particular, the maximum observed value of each residual when operating at steady state is

selected as the corresponding threshold. It should be noted that thresholds values for the

linear filters are relatively higher than the nonlinear filters. This is because the estimation

error when using the linear model based state observer converges to larger values even in the

absence of faults.

To ascertain that both filter designs work, we first consider a case where a large abrupt,

constant bias fault of magnitude 0.5 kmol/m3 in y1 = Ca (single sensor fault) takes place at

time tf = 1.5 hr. The evolution of residual profiles is shown in Fig. 1, where the FDI logic

is able to achieve FDI using both filter designs.

We next consider a fault of smaller magnitude (0.05 kmol/m3 ). In particular, we consider

a case where an abrupt, constant bias fault in y1 = Ca (single sensor fault) takes place at time

tf = 1.5 hr. The evolution of the measurements of the output variables, the state estimates

provided by the observer that uses measurements of Cb, Ci, Cs, Ct and TR, and the true

values of the state variables are depicted by solid, dashed, and dashed-dotted lines in Fig.

2, respectively. The evolution of residual profiles is shown in Fig. 1. It can be seen that

some of the filters breach their threshold for the linear FDI design. In essence, the fault is

successfully detected but is not isolated since the residual profiles does not follow any of the

expected patterns. In contrast, the nonlinear FDI design successfully detects and isolates the

fault.
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We next consider a case where incipient faults in y1 = Ca and u6 = Tc (one actuator fault

and one sensor fault) take place, starting at time tf = 1.5 hr. The faults are simulated as

follows:

ỹ1 =


0, 0 ≤ t < tf

(0.05 + 0.05 sin 5t)(2− e5tf−5t), t ≥ tf

ũ6 =


0, 0 ≤ t < tf

(5 + 5 sin 5t)(2− e5tf−5t), t ≥ tf

(15)

The evolution of residual profiles is shown in Fig. 3. Like the previous case, using the

linear FDI method, some of the residuals breach their thresholds and therefore the fault is

successfully detected. However, the fault is not isolated since residual profiles does not follow

any of expected patterns. In contrast, by using the proposed method, the fault in y1 and u6

is successfully isolated.

The FDI results for other distinguishable faults scenarios were also considered and are

not presented here for sake of brevity. Finally, we demonstrate the ability to detect the

indistinguishable faults. In particular, we consider a case where faults take place in y4 = Cs

and u1 = Qa at time tf = 1.5hr, simulated as follows:

ỹ4 =


0, 0 ≤ t < tf

(0.55 + 0.55 sin 5t)(2− e5tf−5t), t ≥ tf

ũ1 =


0, 0 ≤ t < tf

(3.5 + 3.5 sin 5t)(2− e5tf−5t), t ≥ tf

(16)

The evolution of residual profiles is shown in Fig. 4. As it is mentioned in Theorem 1,

since all the residuals breach their thresholds, the fault is successfully detected. However, the

fault can not be in any of considered scenarios in FDI filters design, since all of the residual
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have breached their thresholds. Therefore according to the Theorem 1, the fault must be

in either y4 = Cs or y5 = Ct or u1 = Qa, u2 = Qb, u3 = Qi, u4 = Qs, u5 = Qt or any

combination of these actuator and sensor faults.

Remark 5. In essence, the linear FDI method is only able to detect, but not isolate faults in

the copolymerization process. This is primarily due to the estimation and prediction errors

associated with using a linear model in the observer, prediction model and filter design. The

high gain observer can readily be replaced by other observers (such as the Kalman filter,

extended Kalman filter, or the moving horizon observers), which can improve the estimation

accuracy of the observer; however, the errors associated with prediction using a linear model

will still remain limiting the effectiveness of linear model based FDI designs.

Remark 6. From fault handling perspective, sensor faults can be handled by using estimation

of states that are verified to be accurate, instead of using a faulty sensor reading (as is done

in the simulation results corresponding to Figure 2). The actuator faults on the other hand

directly impact the control action implemented on the plant, and if not handled, could result

in the states deviating from nominal operating point. In this case, once such a fault has been

detected, robust control methods or control reconfiguration methods can be used to achieve

fault-tolerant control (see, e.g., [6]). To handle actuator and sensor faults simultaneously,

both sensor and actuator handling approaches would have to be implemented simultaneously.

Conclusions

This work considered the problem of isolating actuator and sensor faults in the solution

copolymerization of MMA and VAc. To achieve fault detection and isolation for the copoly-

merization reactor, an actuator and sensor fault isolation framework was designed. The key
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idea is to exploit the analytical redundancy in the copolymerization model through state

observer design using bank of high gain observers. The ability of the proposed framework in

detecting and determining possible locations for indistinguishable fault scenarios was proved

and verified through simulations. Illustrative linear FDI filters were also designed for the

purpose of comparison. While linear model based FDI only achieved fault detection, the

application of the proposed FDI mechanism was found to also successfully isolate distin-

guishable faults even in the presence of plant-model mismatch and measurement noise.
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Appendix A:Lyapunov Based Model Predictive Control

Consider the nonlinear system of Eq. 4 with input constraints for which a control Lya-

punov function V exists. Let Π denote a set of states where V̇ (x(t)) can be made negative

by using the allowable values of the constrained input:

Π = {x ∈ Rn : supLfV (x) + infLGV (x)u ≤ −ε∗∗V (x)} (17)

where LGV (x) = [Lg1V (x), . . . , LgmV (x)], with gi the ith column of G and ε∗∗ is a positive

real number. The controller of [20] possesses a stability region, an estimate of which is given
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by

Ω = {x ∈ Π : V (x) ≤ cmax}, (18)

where cmax is a positive (preferably the largest possible) constant. Having defined the sets

Π, Ω, the Lyapunov based predictive controller of [20] follows the formulation below:

uMPC(x) : = argmin{J(x, t, u(.))|u(.) ∈ S} (19)

s.t. ẋ = f(x) +G(x)u (20)

LGV (x(t))u(x(t)) ≤ sup− LfV (x(t))− ε∗∗V (x(t)) (21)

x(τ) ∈ Π ∀τ ∈ [t, t+ ∆] (22)

where S = S(t, T ) is the family of piecewise continuous functions (functions continuous from

the right), with T denoting the control horizon, mapping [t, t + T ] into U. A control u(.) in

S is characterized by the sequence {u(tk)} and satisfies u(τ) = u(tk) for all τ ∈ [tk, tk + ∆].

The objective function is given by

J(x, t, u(.)) =

∫ t+T

t

[‖xu(s;x, t)‖2Qw
+ ‖u(s)‖2Rw

]ds (23)

where Qw and Rw are positive semidefinite, and strictly positive definite, symmetric matrices,

respectively, xu(s;x, t) denotes the solution of Eq. 20, due to control u, with initial state x at

time t and T is specified horizon. In accordance with the receding horizon implementation,

the minimizing control uMPC is then applied to the system over [t, t + ∆], and the same

procedure is repeated at the next instant. The stability property of the Lyapunov based

predictive control design in [20] can be formulated as follows: given any positive real number

d, there exists a positive real number ∆∗ such that if ∆ ∈ [0,∆∗] and x(0) ∈ Ω then x(t) ∈ Ω,

for all t ≥ 0 and lim supt→∞‖x(t)‖ ≤ d (see e.g. [20] for further details). Note that the control

design in Mahmood and Mhaskar (2008) is used only to illustrate the proposed framework
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in this work and the obtained results hold under any control law that guarantees stability of

the closed loop system.
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Table 1: Process parameters for the solution copolymer-

ization example.

Parameter Value Unit Parameter Value Unit

V 1 m3 Axba 5.257× 104 m3/kmol·s

R 8.314 kJ/kmol·K Axbb 1577 m3/kmol·s

ρ 8.79× 102 kg/m3 Axbs 1514 m3/kmol·s

cp 2.01 kJ/kg·K Axbt 4.163× 105 m3/kmol·s

U 6.0× 10−2 kJ/m2·s·K Ei 1.25× 105 kJ/kmol

A 4.6 m2 Ecaa 2.69× 104 kJ/kmol

T0 353.15 K Ecbb 4.00× 103 kJ/kmol

ε 1 Edaa 0.0 kJ/kmol

Ma 100.12 kg/kmol Edbb 0.0 kJ/kmol

Mb 86.09 kg/kmol Epaa 2.42× 104 kJ/kmol

Mi 164.21 kg/kmol Epab 2.42× 104 kJ/kmol

Ms 78.11 kg/kmol Epba 1.80× 104 kJ/kmol

Mt 44.05 kg/kmol Epbb 2.42× 104 kJ/kmol

Ai 4.5× 1014 s−1 Exaa 2.42× 104 kJ/kmol

Acaa 4.209× 1011 m3/kmol·s Exab 2.42× 104 kJ/kmol

Acbb 1.61× 109 m3/kmol·s Exas 2.42× 104 kJ/kmol

Adaa 0 m3/kmol·s Exat 2.42× 104 kJ/kmol

Adbb 0 m3/kmol·s Exba 1.80× 104 kJ/kmol

Apaa 3.207× 106 m3/kmol·s Exbb 1.80× 104 kJ/kmol
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Apab 1.233× 105 m3/kmol·s Exbs 1.80× 104 kJ/kmol

Apba 2.103× 108 m3/kmol·s Exbt 2.42× 104 kJ/kmol

Apbb 6.308× 106 m3/kmol·s −∆Hpaa 54.0× 103 kJ/kmol

Axaa 32.08 m3/kmol·s −∆Hpba 54.0× 103 kJ/kmol

Axab 1.234 m3/kmol·s −∆Hpab 86.0× 103 kJ/kmol

Axas 86.6 m3/kmol·s −∆Hpbb 86.0× 103 kJ/kmol

Axat 2085.0 m3/kmol·s
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Table 2: Faults to which the residuals are insensitive and thresholds for the linear FDI filters.

Residual Faults Threshold Residual Faults Threshold

r1 ỹ1 0.3 r2 ỹ2 6.3

r3 ỹ3 0.55 r4 ỹ6 0.55

r5 ỹ1, ỹ2 0.18 r6 ỹ1, ỹ3 0.18

r7 ỹ1, ỹ6 0.18 r8 ỹ2, ỹ3 0.55

r9 ỹ2, ỹ6 0.5 r10 ỹ3, ỹ6 0.5

r11 ũ6 0.5 r12 ũ6, ỹ6 0.5

r13 ũ6, ỹ1 0.01 r14 ũ6, ỹ2 0.5

r15 ũ6, ỹ3 0.5
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Table 3: Faults to which the residuals are insensitive and thresholds for the nonlinear FDI

filters.

Residual Faults Threshold Residual Faults Threshold

r1 ỹ1 0.27 r2 ỹ2 0.2

r3 ỹ3 0.07 r4 ỹ6 0.07

r5 ỹ1, ỹ2 0.07 r6 ỹ1, ỹ3 0.068

r7 ỹ1, ỹ6 0.06 r8 ỹ2, ỹ3 0.06

r9 ỹ2, ỹ6 0.06 r10 ỹ3, ỹ6 0.06

r11 ũ6 0.01 r12 ũ6, ỹ6 0.01

r13 ũ6, ỹ1 0.06 r14 ũ6, ỹ2 0.01

r15 ũ6, ỹ3 0.01
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Figure 1: Evolution of the residuals for large (solid lines) and small (dashed-dotted lines)

magnitude constant sensor fault. The thresholds are depicted by the dashed lines. Top: Using

linear FDI filters enables FDI for the large sensor faults but only FD for small magnitude

sensor fault. Bottom: Using nonlinear FDI filters enables FDI for both cases.
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Figure 2: Evolution of the closed-loop measurements (solid lines), the state estimates (dashed

lines), and the true values of the process states (dashed-dotted lines). A fault takes place in

Ca sensor at time tr = 1.5 hr and is handled. Since the observer does not use measurements

of Ca, the state estimates stay close to their true values even after the fault takes place.
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Figure 3: Evolution of the residuals (solid lines) and thresholds (dashed lines). Top: Using

linear FDI filters: Since some of the residuals breach their thresholds, the fault is detected

but is not isolated. Bottom: Using nonlinear FDI filters: Since all the residuals breach their

thresholds except for r13, which is insensitive to ỹ1 and ũ6 (see Table 3), faults in y1 and u6

are isolated.
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Figure 4: Evolution of the residuals (solid lines) and thresholds (dashed lines). Top: Using

linear FDI filters, Bottom:Using nonlinear FDI filters. In both cases, since all the residuals

breach their thresholds, the fault is detected but is not isolated.
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