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Solving Discrete Optimization Problems

Standard Mixed-Integer Linear Programming (MILP) Formulation:

min
x,y
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xmin ≤ x ≤ xmax, y ∈ {0, 1}ny

We seek a rigorous solution

The concept of local derivative information (or gradient) does not
exist for discrete variables!

The basic numerical optimization paradigm (improving search) applies
only when we know/assume the values of all integer variables

We need a new approach for problems with integer variables!
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Solving Discrete Optimization Problems

That discrete optimization models are more difficult to solve than
continuous models may appear counter-intuitive

After all, a discrete model only has a finite number of choices for
decision variables!

Total Enumeration:

Solve a discrete optimization by trying all possible combinations
and keep whichever is best

Class Exercise: Solve the following discrete optimization model by total
enumeration:

max
y

7y1 + 4y2 + 19y3

s.t. y1 + y2 ≤ 2

y2 + y3 ≤ 1

y1, y2, y3 ∈ {0, 1}

Case Objective Case Objective
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Solving Discrete Optimization Problems

Exponential Growth with Total Enumeration:

For n binary variables,

◮ n = 10:

◮ n = 20:

◮ n = 30:

1 With no more than a few discrete variables, total enumeration is often
the most effective solution method

2 But, exponential growth makes total enumeration impractical with
models having more than a handful of discrete decision variables

Back to the Drawing Board!
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Solving Discrete Optimization Problems

New Paradigm for Discrete Optimization Search

Construct a sequence of related, simpler subproblems, the solutions of
which converges (finitely) to the original solution

Use relaxations to define the subproblems
◮ E.g., relax the feasible region (LP relaxations) and/or the objective

function (Lagrangian relaxations)

The subproblems should be easier to solve than the original (since
many may have to be solved)

Each subproblem should yield a bound on the original optimal
solution value:

◮ Lower bound for a minimize problem
◮ Upper bound for a maximize problem

The number of subproblems solved should be much smaller than with
the complete enumeration method
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For additional details, see Rardin (1998), Chapter 12
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Relaxations of Discrete Optimization Models

Constraint Relaxation

Model (R) is said to be a constraint relaxation of model (P) if:

every feasible solution to (P) is also feasible in (R)

(P) and (R) have the same objective function

Original MILP Model:
min
x,y

7x1 + x2 + 3y1 + 6y2

s.t. x1 + 10x2 + 2y1 + y2 ≥ 100

y1 + y2 ≤ 1

x1, x2 ≥ 0, y1, y2 ∈ {0, 1}

Relax. #1: Drop constraint
min
x,y

7x1 + x2 + 3y1 + 6y2

s.t. x1 + 10x2 + 2y1 + y2 ≥ 100

x1, x2 ≥ 0, y1, y2 ∈ {0, 1}

Relax. #2: Relax constraint RHS
min
x,y

7x1 + x2 + 3y1 + 6y2

s.t. x1 + 10x2 + 2y1 + y2 ≥ 50

y1 + y2 ≤ 1

x1, x2 ≥ 0, y1, y2 ∈ {0, 1}

Relax. #3: Remove integrality
min
x,y

7x1 + x2 + 3y1 + 6y2

s.t. x1 + 10x2 + 2y1 + y2 ≥ 100

y1 + y2 ≤ 1

x1, x2 ≥ 0, 0 ≤ y1, y2 ≤ 1
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Linear Programming Relaxations

LP Relaxations

LP relaxations of a MILP model are formed by treating any discrete
variables as continuous, while retaining all other constraints:

yi ∈ {0, 1} =⇒ 0 ≤ yi ≤ 1

Motivations:

Bring all the power of LP to bear on analysis of discrete models

By far the most used relaxation forms

Properties:

Are LP relaxations guaranteed
to yield valid relaxations?

◮

optimum point

feasible solutions

feasible solutions

in relaxed model

in original model

Benôıt Chachuat (McMaster University) MILP: Branch-and-Bound Search 4G03 8 / 23



Properties of LP Relaxations (cont’d)

Proving Infeasibility with Relaxations

If an LP relaxation is infeasible, so is the MILP model it relaxes

Question: Can we conclude anything regarding the feasibility of the ILP
model if the LP relaxation has a feasible solution?

Class Exercise: Use LP relaxations to help establish infeasibility of the
following ILP models:

min
y

8y1 + 2y2

s.t. y1 − y2 ≥ 2

− y1 + y2 ≥ −1

y1, y2,∈ {0, 1, 2, . . .}

min
y

y1 + 2y2

s.t. 4y1 + 2y2 ≥ 1

4y1 + 4y2 ≤ 3

y1, y2,∈ {0, 1}
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Properties of LP Relaxations (cont’d)

Solution Bounds from LP Relaxations

The optimal value of an LP relaxation of a maximize MILP model
yields an upper bound on the optimal value of that model

The optimal value of an LP relaxation of a minimize MILP model
yields a lower bound

Class Exercise: Consider the following ILP model:

max
y

y1 + y2 + y3

s.t. y1 + y2 ≤ 1

y1 + y3 ≤ 1

y2 + y3 ≤ 1

y1, y2, y3 ∈ {0, 1}

1 Formulate and solve an LP relaxation of the ILP model (by inspection)

2 Solve the ILP model (by inspection) and compare the optimal values
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Properties of LP Relaxations (cont’d)

Optimal Solutions from Relaxations

If an optimal solution to an LP relaxation is feasible in the MILP model it
relaxes, the solution is optimal in that model too

Class Exercise: Solve LP relaxations for the following ILP models:

max
y

y1 + y2 + y3

s.t. y1 + y2 ≤ 1

y1 + y3 ≤ 1

y2 + y3 ≤ 1

y1, y2, y3 ∈ {0, 1}

min
y

20y1 + 8y2 + 3y3

s.t. y1 + y2 + y3 ≤ 1

y1, y2, y3 ∈ {0, 1}

Is the relaxation optimum also optimal in the MILP model?

Heuristics: LP relaxations may produce optimal solutions that are easily
“rounded” to good feasible solution for the corresponding MILP model

Benôıt Chachuat (McMaster University) MILP: Branch-and-Bound Search 4G03 11 / 23

Branch-and-Bound Search

Branch-and-Bound algorithms combine partial enumeration strategy
with relaxation techniques:

Classes of solutions are formed and investigated to determine whether
they can or cannot contain optimal solutions

This search is conducted by analyzing associated relaxations

Only promising classes are searched in further details

Partial Solutions and Completions

A partial solution has some discrete decision variables fixed, while
other left free (denoted by #)

The completions of a partial solution are the possible full solutions
agreeing with the partial solution on all fixed variables

Example: y = (1,#, 0,#) is a partial solution with y1 = 1 and y3 = 0,
while y2 and y4 are free; its completions are (1, 0, 0, 0), (1, 1, 0, 0),
(1, 0, 0, 1), and (1, 1, 0, 1)
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Branch-and-Bound Tree

0

1 2

3 4

k

y1 = 0 y1 = 1

y2 = 0 y2 = 1

yny = 0

y = (#,#, ...)

y = (0,#, ...) y = (1,#, ...)

y = (0, 0,#, ...) y = (0, 1,#, ...)

y = (0, 0, ...)

Partial solution with
all discrete variables free

Partial solution with
1 discrete variable fixed

Partial solution with
2 discrete variables fixed

Partial solution with
all discrete variables fixed

Nodes of the B&B tree represent partial solution
◮ Numbers indicate the sequence in which nodes are investigated
◮ Total number of nodes is: 1 + 2 + 22 + · · · + 2ny =

∑ny

i=0 2i
> 2ny !

Edges of the B&B tree specify how variables are fixed: branch part
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Getting Started: The Root Node

Root Node

B&B search begins at initial or root partial solution

y(0) ∆
= (#,#, . . .) with all discrete variables free

0y = (#,#, ...)

min
x,y

z
∆
= cTx + dTy

s.t. Ax + Ey
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LP
=⇒

relaxation

min
x,y

z
∆
= cTx + dTy

s.t. Ax + Ey
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xmin ≤ x ≤ xmax

0 ≤ y ≤ 1

Solution of the LP relaxation at the root node provides:
• A lower bound on the MILP (global) optimum for a minimize problem
• An upper bound for a maximize problem
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Outcomes from LP Relaxation Solution at the Root Node

1 No feasible solution

Action: Terminate by Infeasibility — The MILP problem is itself
infeasible

2 All relaxed binary variables are either 0 or 1 at the optimum

Action: Terminate by Completion — We have found an optimum for
the MILP problem (We are very lucky!)

3 Some relaxed binary variables have fractional value at the optimum

Action: Branch — Choose one of the relaxed variables, e.g., y1, and
create two new nodes:

0

1 2

y1 = 0 y1 = 1

y = (#,#, ...)

y = (0,#, ...) y = (1,#, ...)

Partial solution with
all discrete variables free

Partial solution with
1 discrete variable fixed

Benôıt Chachuat (McMaster University) MILP: Branch-and-Bound Search 4G03 15 / 23

Intermediate Nodes

Candidate Problems

The candidate problem associated with a
partial solution to an MILP model is the
restricted model obtained by fixing the
discrete variables as in the partial solution

kyi

{

fixed, ∀i ∈ F (k)

free, otherwise

min
x,y

z
∆
= cTx + dTy

s.t. Ax + Ey
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Partial solution
=⇒

F (k) ∆
= fixed set

min
x,y

z
∆
= cTx + dTy

s.t. Ax + Ey
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xmin ≤ x ≤ xmax

yi

{

fixed, ∀i ∈ F (k)

∈ {0, 1}, otherwise

Formulate and solve the LP relaxation of a candidate model
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Intermediate Nodes (cont’d)

Incumbent Solutions

The incumbent solution at any stage in a B&B search is the best (in
terms of objective value) feasible solution known so far

The incumbent solution may have been discovered as the search
evolved, or derive from experience prior to the search

Any incumbent solution provides:
◮ an upper bound on the MILP global optimum for a minimize problem
◮ a lower bound for a maximize problem

The B&B search is efficient when many partial solution can be
terminated at an early stage:

• Exploit LP relaxations of candidate models
• Exploit incumbent solutions
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Terminating Partial Solutions

1 The candidate problem has an Infeasible LP relaxation

Action: Terminate by infeasibility — The candidate problem is itself
infeasible

2 The candidate problem has a LP relaxation whose optimal value is no
better than the current incumbent solution value

Action: Terminate by value dominance — No feasible completion of
the candidate model can improve on the incumbent

3 The candidate problem has a LP relaxation whose optimal solution
with all relaxed binary variables equal to 0 or 1

Action 1: Terminate by Completion — This is an optimum for the
candidate problem
Action 2: Update incumbent (if applicable)

In any other case, branch!
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Terminating Branch-and-Bound Search

B&B search stops when every partial solution in the tree has been
either branched or terminated

The final incumbent is a global optimum, if one exists
The model is infeasible, otherwise

One might also decide the stop B&B search when sufficiently close to
the optimum:

z
(k)
rel

− z
(k)
inc

1
2

∣

∣

∣
z

(k)
rel

+ z
(k)
inc

∣

∣

∣

< ǫr

with ǫr a user tolerance
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Branch-and-Bound Heuristics

Heuristics for Branching Variable Selection:

Consider only those discrete variables having fractional values in the
associated candidate problem

If several, branch by fixing the fractional discrete variable closest to 0
or 1 — Accounting on experience can be pretty useful too!

Heuristics for Branching Node Selection:

Depth-first search selects an active partial solution with the most
component fixed — i.e., one deepest in the search tree

Best-first search selects an active partial solution with best parent
bounds

Depth-forward best-back search selects a deepest active partial
solution after branching a node, but one with best parent bound after
a termination
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Applying Branch-and-Bound Search
Class Exercise: The following table shows candidate problem LP
relaxation optima for all possible combinations of fixed and free values in a
maximizing MILP problem over x ≥ 0 and (y1, y2, y3) ∈ {0, 1}

Partial y
(k)
rel

x
(k)
rel

z
(k)
rel

Partial y
(k)
rel

x
(k)
rel

z
(k)
rel

(#,#,#) (0.2,1,0) 0 82.80 (0,0,1) Infeasible
(#,#,0) (0.2,1,0) 0 82.80 (0,1,#) (0,1,0.67) 0 80.67
(#,#,1) (0,0.8,1) 0 79.40 (0,1,0) (0,1,0) 2 28.00
(#,0,#) (0.7,0,0) 0 81.80 (0,1,1) (0,1,1) 0.5 77.00
(#,0,0) (0.7,0,0) 0 81.80 (1,#,#) (1,0,0) 0 74.00
(#,0,1) (0.4,0,1) 0 78.60 (1,#,0) (1,0,0) 0 74.00
(#,1,#) (0.2,1,0) 0 82.80 (1,#,1) (1,0,1) 0 63.00
(#,1,0) (0.2,1,0) 0 82.80 (1,0,#) (1,0,0) 0 74.00
(#,1,1) (0,1,1) 0.5 77.00 (1,0,0) (1,0,0) 0 74.00
(0,#,#) (0,1,0.67) 0 80.67 (1,0,1) (1,0,1) 0 63.00
(0,#,0) (0,1,0) 2 28.00 (1,1,#) (1,1,0) 0 62.00
(0,#,1) (0,0.8,1) 0 79.40 (1,1,0) (1,1,0) 0 62.00
(0,0,#) Infeasible (1,1,1) (1,1,1) 0 51.00
(0,0,0) Infeasible

1 Solve the model by B&B search, using depth-first search
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Applying Branch-and-Bound Search
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Mixed-Integer Programming — The Final Words

Mixed-integer programs are very common!

In general, MILPs require the solving of many (perhaps a huge
number) of LPs

B&B search offers the potential for a sizeable reduction in
computation — Though not for all MILP problems!

Experience with a problem can lead to great computational savings

Sensitivity information is lacking at an optimal solution due to
binary/integer variables

GAMS™ with the CPLEX solver provides good performance for MILP
solution
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